Лабораторная работа

ИССЛЕДОВАНИЕ ДИНАМИКИ ВНУТРЕНЕГО ПОЖАРА

Цель работы: изучить изменение основных параметров внутреннего пожара во время его свободного развития, а также их взаимосвязь и зависимость от различных факторов.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Пожар — это сложный комплекс неразрывно связанных физических и химических процессов, среди которых основным является процесс горения. Для поддержания горения на пожаре необходим постоянный приток свежего воздуха в зону химических реакций и удаление из нее образующихся продуктов. Этот процесс называется газообменом. При пожарах на открытом пространстве происходит газообмен зоны химических реакций с окружающей средой. Он лимитируется практически только диффузией окислителя. При внутренних пожарах газообменом фактически является вентиляция помещения через проемы в ограждающих конструкциях, вызванная и регулируемая процессами горения и теплообмена.

Появление очага горения в помещении сразу вызывает повышение давления газовой среды т.к. объем продуктов горения, даже при нормальных условиях, больше объема израсходованного воздуха. Температура и плотность при этом изменяется незначительно. В соответствии с законом Паскаля ($P = P_0 - \rho g h$, где: P_0 — давление столба газа на уровне пола, P — давление столба газа на расстоянии h от пола, ρ — плотность газа, g — ускорение свободного падения) распределение давлений по высоте помещения также остается практически неизменным. В результате этого эпюра давлений внутри помещения на данном этапе смещается практически параллельно относительно эпюры давлений наружного воздуха (рис. 1.1а) и газы вытекают из помещения через все имеющиеся отверстия независимо от их расположения. Приток воздуха в помещение извне отсутствует, и процесс горения развивается за счет воздуха, находящегося в помещении.

По мере развития процесса горения и увеличения размеров очага температура газовой среды в помещении повышается, плотность (ρ_{Γ}) падает, угол наклона эпюры давлений возрастает. В результате этого наступает момент, когда давление газов (P_{Γ}) в верхней части помещения становится несколько больше атмосферного ($P_{\rm B}$), в нижней части – меньше и на какомто уровне – равно атмосферному (рис. 1.1б). Т.е. на этом уровне располагается условная горизонтальная плоскость, на которой выполняется условие $\Delta P = P_{\Gamma} - P_{\rm B} = 0$. Она называется плоскостью равных давлений (ПРД) или нейтральной зоной. Расстояние от ПРД до пола считается высотой нейтральной зоны и обозначается $h_{\rm H3}$. Через все отверстия, расположенные выше ПРД из помещения удаляются газы, ниже ПРД — поступает воздух

(см. рис. 1.1б). При этом расход воздуха через проемы определяется высотой ПРД относительно нижней отметки проема $-h_0$.

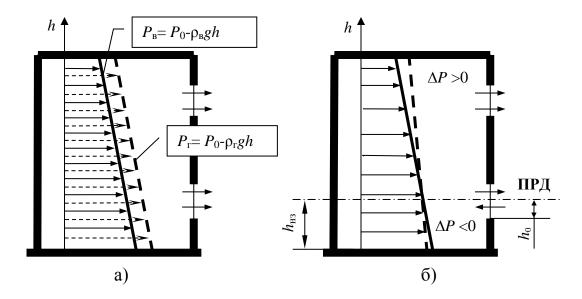


Рис. 1.1. Распределение давлений при пожаре в помещении: а) при появлении очага горения; б) при развившемся пожаре.

Стрелками показано направление движения газовых потоков. Сплошная линия - эпюра давлений воздуха снаружи, пунктирная - эпюра давлений газовой среды внутри помешения.

По своей природе процесс горения представляет собой химическую реакцию между горючим веществом и окислителем, которая протекает с выделением тепла. Часть тепла расходуется в зоне химических реакций на нагрев продуктов горения, часть – передается в окружающую среду в виде излучения, конвекции и теплопроводности. Если бы тепло, выделяющееся в зоне горения, расходовалось только на нагрев газовой среды внутри помещения, то ее максимальная температура постепенно достигала бы температуры пламени. Однако часть тепла, выделяющегося в зоне горения, поглощают строительные конструкции, часть теряется в результате излучения через открытые проемы, затрачивается на нагрев горючих материалов (главным образом в ходе начальной стадии пожара), уносится из помещения вместе с продуктами горения через проемы. В общем виде тепловой баланс внутреннего пожара может быть представлен следующим уравнением:

$$q_{\Pi} = q_{\rm cp} + q_{\rm yH} + q_{\rm M} + q_{\rm K} + q_{\rm J} \tag{1.1}$$

где: $q_{\rm cp}$ - интенсивность накопления тепла газовой средой в помещении; $q_{\rm yd}$ - интенсивность удаления тепла из помещения нагретыми газами; $q_{\rm M}$ - интенсивность поглощения тепла горючими материалами во время их нагрева до воспламенения; $q_{\rm K}$ - интенсивность поглощения тепла ограждающими конструкциями; $q_{\rm M}$ - интенсивность излучения тепла за пределы помещения через проемы.

Величина $q_{\rm cp}$ определяет температуру газовой среды внутри помещения. Остальные составляющие правой части уравнения (1.1) являются потерями тепла. Величина $q_{\rm K}$ зависит от теплофизических характеристик материалов, из которых выполнены ограждающие конструкции; $q_{\rm A}$ определяется площадью проема, а также излучательной способностью пламени.

Интенсивность поглощения тепла горючими веществами зависит от их теплофизических свойств, проявляется главным образом на стадии распространения пожара, и на температуру газовой среды влияет мало.

Т. о. $q_{\text{л}}$, $q_{\text{к}}$, и $q_{\text{м}}$ обусловлены характеристиками здания и горючих материалов, находящихся в помещении. Поэтому управлять потерями тепла наиболее эффективно путем увеличения $q_{\text{уд}}$:

$$q_{\rm VI} = G_{\rm r} c_p (T_{\rm II} - T_{\rm o}) \tag{1.2}$$

где: c_p - удельная теплоемкость выходящих газов при T_n ; T_o - начальная температура.

Представим сумму $(q_{\rm M}+q_{\rm K}+q_{\rm J})$ как долю потерь m от $q_{\rm II}$. Тогда уравнение (1.1) можно переписать в виде:

$$q_{\rm cp} = q_{\rm II}(1 - m) - q_{\rm y_{\rm I}} \tag{1.3}$$

или

$$q_{\rm cp} = \beta v_{\rm M} Q_{\rm H} (1 - m) - G_{\rm r} c_p (T_{\rm II} - T_{\rm o})$$
 (1.3')

Если $q_{\Pi}(1-m)>q_{yд}$, то $q_{cp}>0$ - происходит интенсивное накопление тепла газовой средой, температура газа повышается. Если $q_{\Pi}(1-m)=q_{yд}$, то $q_{cp}=0$ - пожар протекает при установившемся (стационарном) теплогазообмене. Соотношение $q_{\Pi}(1-m)< q_{yд}$ наблюдается при затухании пожара, когда v_{M} падает и q_{Π} уменьшается. Соответственно интенсивность поступления тепла в газовую среду становится меньше и ее температура понижается.

Динамикой внутреннего пожара называется изменение его параметров во времени. Основными параметрами внутреннего пожара являются следующие.

Продолжительность (время) пожара — τ_{π} . Продолжительностью пожара называется время с момента его возникновения до прекращения процесса горения. Процесс горения может прекратиться самопроизвольно (самозатухание пожара), в результате выгорания горючего или применения огнетушащих веществ. В последнем случае τ_{π} складывается из времени свободного развития и времени тушения.

 Π лощадь пожара — $S_{\rm II}$. Площадью пожара называется площадь проекции зоны горения на горизонтальную или вертикальную плоскость. Как правило, используется проекция зоны горения на горизонтальную плоскость. Горение жидкостей и газов является гомогенным. Горение ТГМ может протекать как в гомогенном, так и в гетерогеном режимах. Поэтому в

площадь пожара включаются участки поверхности, на которых происходит как гомогенное, так и гетерогенное горение.

Составляющая площади пожара, над которой существует пламя - $S_{\text{гомог}}$ зависит от притока воздуха в зону горения. При небольших размерах факела приток воздуха обеспечивает образование горючей смеси практически во всем его объеме. Тогда $S_{\text{гомог}} = S_{\text{п}}$. По мере распространения пожара, края фронта пламени удаляются друг от друга и воздуху все труднее проникать в зону горения. В результате этого внутри факела образуется область, в которой выделяющимся газообразным продуктам пиролиза не хватает окислителя для сгорания.

На внутренних пожарах часто встречается ситуация, когда нехватка кислорода приводит к ограничению объема пламени. Наступает момент, когда площадь, над которой возможно пламенное горение ($S_{\text{гомог}}$), ограничена притоком воздуха, а общая площадь пожара увеличивается за счет роста площади гетерогенного горения ($S_{\text{гетерог}}$).

 Π лощадь поверхности горения — $S_{\rm nr}$. Этот параметр характеризует реальную площадь горючего, которая участвует в горении, т.е. выделяет горючие газы при пиролизе или испарении, а также взаимодействует с окислителем в гетерогенном режиме. Площадь поверхности горения определяет интенсивность выделения тепла на пожаре.

Линейная скорость распространения пожара – v_{π} (м/с, м/мин). Под этим параметром понимают путь, который на данном объекте проходит фронт пламени в единицу времени. Величина v_{π} определяет площадь пожара на данный момент. Она зависит от вида горючего, характеристик пожарной нагрузки и ее размещения, вида пожара и др. факторов.

Площадь пожара в реальных условиях зависит не только от скорости распространения пламени по поверхности ТГМ, но и от скорости его перехода с одного предмета на другой. Поэтому на $v_{\scriptscriptstyle Л}$ влияет также характер размещения горючих изделий и материалов на объекте, интенсивность теплового излучения, направление и скорость газовых потоков. При рассредоточенной пожарной нагрузке интенсивности излучения от горящего предмета может быть недостаточно для воспламенения материалов соседних предметов. Тогда пожар не распространится на всю площадь объекта и останется локальным.

Величина v_{π} зависит также от состава газовой среды, поступающей в зону горения. Так, на внутренних пожарах, по мере развития процесса горения, концентрация кислорода в газовой среде уменьшается, температура пламени и, соответственно, его излучательная способность снижаются. Это приводит к уменьшению скорости распространения пламени по поверхности горючего. Вместе с тем, температура газовой среды в помещениях часто достигает температуры воспламенения материалов до того как

пожар охватит все помещение. В этих случаях перед фронтом пламени образуется газовоздушная смесь на нижнем концентрационном пределе, по которой пламя распространяется со скоростью до 50 м/с, т.е. практически мгновенно. Это явление называется общей вспышкой.

Массовая скорость выгорания — масса горючего вещества, сгорающая в единицу времени. Для газообразных горючих она равна скорости выброса вещества. Для жидкостей и твердых материалов она определяется как скорость потери массы т.е. показывает, какая масса ТГМ или жидкости при горении переходит в газообразное состояние в единицу времени. Очевидно, что чем больше площадь поверхности, с которой происходит газовыделение, тем выше потеря массы. Поэтому различают массовую скорость выгорания абсолютную - $v_{\rm M}$ (кг/с, кг/мин), удельную - $v_{\rm M}$ [кг/(с·м²), кг/(мин·м²)] и приведенную $v_{\rm M}$ [кг/(с·м²), кг/(мин·м²)].

На открытых пожарах, образующиеся (выбрасываемые) газы сгорают практически полностью в зоне горения. На внутренних пожарах из-за недостатка воздуха часто возникает ситуация, когда газы в помещении выделяются быстрее, чем успевают сгорать внутри помещения.

 $Tеплота пожара - q_{\pi}$ (кВт) показывает какое количество тепла выделяется на пожаре в 1с и определяется выражением:

$$q_{\scriptscriptstyle \Pi} = \beta \nu_{\scriptscriptstyle M} Q_{\scriptscriptstyle H}$$
 или $q_{\scriptscriptstyle \Pi} = \beta \nu_{\scriptscriptstyle M}^{\scriptscriptstyle yA} S_{\scriptscriptstyle \Pi} Q_{\scriptscriptstyle H}$ (1.4)

где: β — коэффициент полноты сгорания; $Q_{\rm H}$ - низшая теплота сгорания материала, к Π ж/кг.

В ряде случаев используют понятие "приведенная теплота пожара" т.е. интенсивность выделения тепла с единицы площади пожара - $q_{\Pi}' = q_{\Pi}/S_{\Pi} = \beta v_{\rm M}^{\ \ {\rm yd}} Q_{\rm H}$, к ${\rm BT/M}^2$.

 $Tемпература пожара - T_{II}$. Температурой открытых пожаров считается температура пламени. Она зависит, главным образом от вида горючего. Для наиболее распространенных ТГМ действительная температура горения составляет около 1150°C, жидкостей - 1250°C, газов - 1350°C.

Температурой внутренних пожаров на практике считается среднеобъемная температура газовой среды в помещении. Она ниже температуры горения материалов на открытом пространстве. Так, при горении ТГМ в помещении, среднеобъемная температура газовой среды редко превышает 1000°C.

Koэффициент избытка воздуха — α характеризует количество воздуха, которое при пожаре не участвует в горении. На внутренних пожарах, при наличии газообмена помещения с окружающей средой α находится как отношение расхода воздуха фактически поступающего через проемы $(G_{\rm B})$ к теоретически необходимому для сгорания материала с массовой скоростью $\nu_{\rm M}$ $(G_{\rm B}^{\rm o})$:

$$\alpha = G_{\rm R}/G_{\rm R}^{\rm o}. \tag{1.5}$$

Следует иметь в виду, что коэффициент избытка воздуха относится к объему всего помещения. Непосредственно в зоне горения практически всегда недостаток воздуха. По величине α можно оценить концентрацию кислорода (ϕ_{κ}) в продуктах горения из выражения:

$$\alpha \approx 21/(21 - \varphi_{\kappa}) \tag{1.6}$$

Если при развитии пожара ϕ_{κ} понизится до значения, предельного для горения данного горючего материала, то резкий приток воздуха может вызвать объемную вспышку и выброс пламени в смежное помещение.

В динамике внутренних пожаров выделяют четыре основных стадии: начальную, развития, стационарную и стадию затухания. Начальной стадией считается период времени от момента возникновения очага пожара до охвата пламенем максимально возможной площади. Если начальная стадия заканчивается охватом всего помещения, т.е. $S_{\rm п} = S_{\rm пола}$, пожар становится объемным. Если по какой-то причине (например, большой неравномерности распределения нагрузки) пожар охватывает лишь часть помещения, он называется локальным.

Стадия развития протекает уже при постоянной площади пожара. В этот период параметры процессов горения, газо- и теплообмена достигают предельных для данного пожара значений и затем, на какое-то время, остаются постоянными. Стадия, в течение которой параметры пожара не изменяются, называется стационарной. Если пожар не тушить, то он переходит в стадию затухания, когда площадь горения уменьшается, скорость выгорания и, соответственно теплота пожара снижаются, плоскость равных давлений поднимается. В помещение поступает больше холодного воздуха, что при уменьшении интенсивности тепловыделения приводит к снижению температуры пожара.

В зависимости от соотношения массовой скорости образования горючих газов и скорости их сгорания внутри помещения различают два режима внутреннего пожара. В тех случаях, когда приток воздуха достаточен для достижения максимальной полноты сгорания, обусловленной видом горючего, массовая скорость выгорания не зависит от расхода воздуха, поступающего в помещение. Такой режим получил название "пожар регулируемый нагрузкой" (ПРН). В тех случаях, когда интенсивность газообмена ограничивает массовую скорость выгорания, т.е. приток воздуха в помещение не обеспечивает максимальную полноту сгорания горючих газов, пожар называется регулируемым вентиляцией (ПРВ).

Если при режиме ПРН увеличить приток воздуха в помещение температура газовой среды понизится т.к. наружный воздух является значительно более холодным. Вскрытие проемов, откачивание дыма при ПРН также

приводит к снижению температуры пожара. При таких способах регулирования газообмена возрастает интенсивность удаления тепла с продуктами горения $q_{yд}$. А так как $q_{п}$ при ПРН не изменяется ($v_{м}$ остается постоянной), q_{cp} становится отрицательной (см. уравнение 1.3) и температура пожара снижается.

Очевидно, что при ПРВ увеличение интенсивности газообмена вызовет рост массовой скорости выгорания, интенсивности тепловыделения $q_{\rm п}$ и, соответственно, температуры пожара. При длительном развитии пожара в режиме ПРВ в помещении накапливаются несгоревшие газы. Вскрытие проемов приводит к их разбавлению воздухом. Создается угроза образования и воспламенения горючей газовоздушной смеси — объемной вспышки.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

О п и с а н и е у с т а н о в к и. Схема установки показана на рис. 1.2. Основным ее элементом является макет помещения. Макет оборудован одним дверным проемом. Площадь и конфигурация проема изменяются при помощи одной горизонтальной и двух вертикальных заслонок.

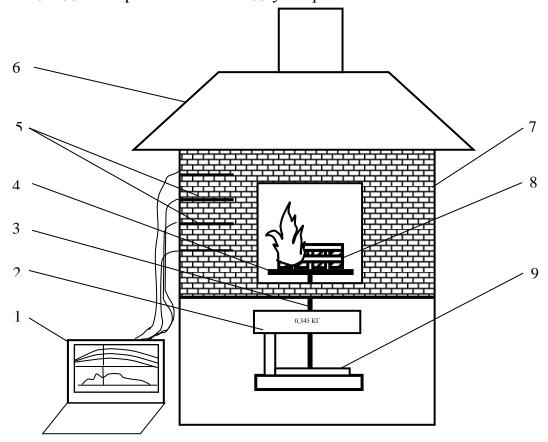


Рис. 1.2. Схема экспериментальной установки. 1 – компьютер; 2 – электронные весы; 3 – шток; 4 - поддон; 5 – термопары; 6 – зонт системы вентиляции; 7 – макет помещения; 8 – штабель; 9 – платформа весов.

Горючий материал размещается на подвижном поддоне, который закреплен на платформе электронных весов.

Температура газовой среды в разных точках объема помещения контролируется термопарами. Показания термопар и весов через каждые 10с считываются измерительным комплексом и регистрируются с помощью компьютера. Для определения положения ПРД относительно нижней отметки проема рядом с проемом прикреплена измерительная линейка.

В ходе выполнения работы проводятся два опыта при разных режимах пожара.

При горении штабеля древесины режим пожара можно определить по параметру Ф:

$$\Phi = \frac{\rho_{\rm B} \sqrt{g} S_{\rm mp} \sqrt{H}}{S_{\rm mr}},\tag{1.7}$$

где: $\rho_{\rm B}$ – плотность воздуха, кг/м³, g – ускорение свободного падения, g = 9,8м/с²; $S_{\rm np}$ – площадь проема, м²; H – высота проема, м; $S_{\rm nr}$ – площадь поверхности горения, м².

Если $\Phi < 0.235$ — пожар регулируемый вентиляцией, $\Phi > 0.29$ — пожар регулируемый нагрузкой.

Площадь поверхности горения $S_{\rm nr}$ в каждый момент времени связана с площадью пожара через коэффициент поверхности $K_{\rm n}$:

$$S_{\rm nr} = S_{\rm n} K_{\rm n}. \tag{1.8}$$

С учетом того, что поверхность брусков в местах их пересечений друг с другом гореть не будет, коэффициент поверхности горения штабеля, выложенного из брусков квадратного сечения $(a \times a)$, рассчитывается по следующей формуле:

$$K_{\Pi} = \frac{N(4ab + 2a^2) - 2a^2(n-1)(N/n)^2}{L \cdot b},$$
(1.9)

где: N — общее число брусков в штабеле; n - число рядов; b — длина бруска, L - длина штабеля.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

- 1. Получить у преподавателя задание и записать исходные данные в табл.1.1.
 - 2. Распределить среди членов бригады обязанности по:
 - регистрации измеряемых параметров:
 - массы штабеля, кг;
 - высоты ПРД относительно нижней отметки проема, м;
 - пути, пройденного фронтом пламени к моменту измерения, м;
 - отсчету времени;

- записи результатов измерений в тетради.
- 3. Штабель из брусков древесины выложить на поддоне так, чтобы нижние бруски опирались на края поддона.
- 4. Для регистрации пути, пройденного пламенем, на бруски, расположенные на втором ярусе и обращенные к наблюдателю, нанести деления с интервалом 1см.
- 5. Установить поддон со штабелем на весы и записать его начальную массу в табл. 1.1.
- 6. Вытащить поддон и под крайний слева брусок поместить полоску асбеста, смоченную горючей жидкостью (изопропиловым спиртом, керосином). Заметить на сколько изменилась масса.
 - 7. Установить поддон на весы и поджечь асбест.
 - 8. Установить заслонку в заданном положении.
- 9. После выгорания жидкости (т.е. когда масса поддона со штабелем станет примерно равна начальной) командой «Пуск» включить измерительный комплекс, начать отсчет времени по секундомеру, и через 60с провести первое измерение параметров, указанных в п. 2.
- 10. Все последующие измерения производятся одновременно через каждые 60с.
 - 11. Опыт проводить до прекращения пламенного горения.
 - 12. Остановить работу измерительного комплекса.
 - 13. Сохранить полученные результаты на съемном носителе.
 - 14. Распечатать на принтере отчет.
 - 15. После окончания опыта угли выбрасываются в ведро с водой.

Таблица 1.1 **Исходные данные**

Общее число брусков <i>N</i>	Число брусков в одном ряду <i>п</i>	Начальная масса поддона	Пре				
		масса поддона и штабеля m_0 , кг	ширина <i>В</i> , м	высота <i>Н</i> , м	K_{Π}		
Опыт №1							
Опыт №2							

Результаты измерений

Время, мин	Масса поддона и штабеля, m_i , кг	Путь фронта пламени, l_i , м	Высота ПРД, h_0 , м				
Опыт №1							
1 2 3 4							
Опыт №2							
1 2 3 4 5							

ОБРАБОТКА РЕЗУЛЬТАТОВ

Формируемый компьютером отчет содержит показания всех термопар, значения среднеобъемной температуры T_{π} (в °C) и абсолютной массовой скорости выгорания штабеля $v_{\rm M}$ (в кг/с) в виде графиков и таблицы.

Следует обратить внимание, что каждое значение $v_{\rm M}$, приведенное в таблице, автоматически было умножено на 10^4 . Измерительный комплекс производит расчет $T_{\rm II}$ и $v_{\rm M}$ с интервалом 10с, а значения параметров, определяемых вручную, записываются через 60с. Поэтому, для согласования результатов ручных и автоматических измерений из таблицы отчета, сформированного компьютером, в таблицу 1.3 записывается каждое 6-е значение соответствующего параметра.

Обработка результатов вручную производится следующим образом.

Например. За первую минуту масса поддона со штабелем уменьшилась с m_0 до m_1 , за вторую минуту – с m_1 до m_2 . Фронт пламени за первую минуту переместился на расстояние l_1 от края штабеля, за вторую – на l_2 .

Массовая скорость выгорания равна:

- на первой минуте
$$v_{\rm M}^{-1} = \frac{m_0 - m_1}{60}$$
, кг/с;

- на второй минуте
$$v_{\rm M}^2 = \frac{m_1 - m_2}{60}$$
, кг/с;

и т.д.

Линейная скорость:

- на первой минуте $v_{_{\rm J}}^{\ 1} = \frac{l_{_1}}{1}$, м/мин;
- на второй минуте $v_{_{\rm J}}^{\ 2} = \frac{l_2 l_1}{1}$, м/мин;

и т.д.

Площадь пожара:

- на первой минуте $S_{\Pi}^{\ 1} = l_1 \cdot b$, м 2 ; где b – ширина штабеля (длина бруска), м. - на второй минуте $S_{\Pi}^{\ 2} = l_2 \cdot b$, м 2 ;

и т.д.

Площадь поверхности горения находится по формуле (1.9).

Удельную и приведенную и массовую скорость выгорания получают делением $v_{_{\rm M}}{}^i$ на $S_{_{\Pi \Gamma}}{}^i$ соответственно.

Теплоту пожара $q_{\rm n}$ рассчитывают по выражению (1.4).

Фактический расход воздуха находится по формуле:

$$G_{\rm B} = \frac{2}{3} \mu B h_0 \sqrt{2gh_0 \rho_{\rm B}(\rho_{\rm B} - \rho_{\rm III})}, \text{K}\Gamma/c$$
 (1.10)

где: μ — коэффициент аэродинамического сопротивления проема, μ = 0,65; B — ширина проема, м; h_0 — высота плоскости равных давлений относительно нижней отметки проема, м; g — ускорение свободного падения, м/c²; $\rho_{\rm B}$ — плотность воздуха, принимается $\rho_{\rm B}$ = 1,2 кг/м³; $\rho_{\rm пr}$ — плотность продуктов горения при температуре пожара $T_{\rm п}$

Плотность продуктов горения находится по графику на рис. 1.3.

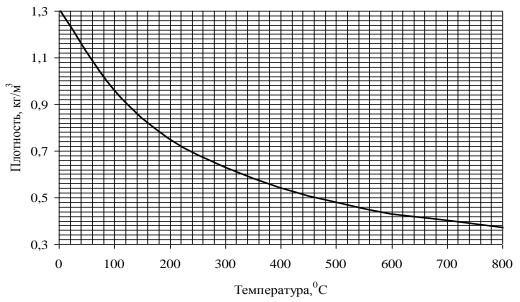


Рис. 1.3. Зависимость плотности продуктов горения от температуры

Теоретически необходимый расход воздуха рассчитывается по формуле:

$$G_{\rm B}^{\ o} = \nu_{\rm M} V_{\rm B}^{\ o} \rho_{\rm B} \tag{1.11}$$

где: $V_{B}{}^{o}$ - теоретический объем воздуха, м³/кг; ρ_{B} - плотность воздуха, кг/м³.

Результаты обработки данных заносятся в табл. 1.3.

Таблица 1.3

Результаты обработки данных

Время, мин	ı, ІИН	S_{II} , M_{II} , M_{II} , M_{II}	Скорость выгорания		T_{Π} ,	q _π ,	$G_{\scriptscriptstyle m B},$	$G_{\scriptscriptstyle m B}^{\;\;0},$	α	
	$ u_{\rm J} $		<i>v</i> _м , кг/с	ν _м ^{уд} , кг/(с·м²)	$V_{\rm M}^{\rm np}$ $K\Gamma/({\bf c}\cdot{\bf M}^2)$	°C	q _п , кВт	кг/с	кг/с	
	Опыт 1									
Опыт 2										

По данным табл. 1.3 строятся графики зависимостей приведенных в ней параметров от времени. На каждом графике приводятся соответствующие зависимости для двух опытов.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Какая стадия (или стадии) пожара исследуются в данных опытах?
- 2. Дать определение, объяснить физический смысл основных параметров внутреннего пожара.
- 3. Как зависит скорость распространения пламени от концентрации кислорода в газовой среде?
 - 4. Что такое общая вспышка? При каких условиях она происходит?
- 5. Что такое объемная вспышка? При каких условиях она происходит?
 - 6. Как зависит теплота пожара от массовой скорости выгорания?
- 7. Как зависит продолжительность начальной стадии пожара от массовой скорости выгорания? Чем объясняется эта зависимость?
- 8. Что такое плоскость равных давлений? Какие параметры влияют на ее положение относительно пола помещения?
 - 9. Что означает "пожар, регулируемый нагрузкой"?
 - 10. Что означает "пожар, регулируемый вентиляцией"?
- 11. Определить режим пожара на момент времени, указанный преподавателем?
- 12. Какие возможны последствия изменения условий газообмена в момент времени, указанный преподавателем?